235 research outputs found

    An all-electric single-molecule hybridisation detector for short DNA fragments

    Get PDF
    In combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipettes, we demonstrate an all-electric, label-free hybridisation sensor for short DNA sequences (< 100 nt). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system a 88-mer target from the RV1910c gene in Mycobacterium tuberculosis that is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive pulse sensing in nanopipettes is capable of identifying rather subtle structural differences, such as the hybridisation state of the probes, in a statistically robust manner. With significant potential towards multiplexing and high-throughput analysis, our study points towards a new, single-molecule DNA assay technology that is fast, easy to use and compatible with point of care environments

    Solubility and Charge Transport in Blends of Poly-dialkoxy-p-phenylene Vinylene and UV-Cross-Linkable Matrices

    Get PDF
    Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) is blended with two different inert UV-cross-linkable matrices to tune the solubility of the solution-processed films. It is found that only 10 wt% of theses matrices is required to make the blend layer insoluble after cross-linking. The addition of only 10 wt% matrix only slightly reduces the hole mobility, whereas the electron transport is not affected. Polymer light-emitting diodes (PLEDs) with an insoluble 90:10 MEH-PPV: matrix blend layer exhibit the same current density and photocurrent as pristine MEH-PPV PLEDs

    Exploitation of TerraSAR-X Data for Land use/Land Cover Analysis Using Object-Oriented Classification Approach in the African Sahel Area, Sudan.

    Get PDF
    Recently, object-oriented classification techniques based on image segmentation approaches are being studied using high-resolution satellite images to extract various thematic information. In this study different types of land use/land cover (LULC) types were analysed by employing object-oriented classification approach to dual TerraSAR-X images (HH and HV polarisation) at African Sahel. For that purpose, multi-resolution segmentation (MRS) of the Definiens software was used for creating the image objects. Using the feature space optimisation (FSO) tool the attributes of the TerraSAR-X image were optimised in order to obtain the best separability among classes for the LULC mapping. The backscattering coefficients (BSC) for some classes were observed to be different for HH and HV polarisations. The best separation distance of the tested spectral, shape and textural features showed different variations among the discriminated LULC classes. An overall accuracy of 84 % with a kappa value 0.82 was resulted from the classification scheme, while accuracy differences among the classes were kept minimal. Finally, the results highlighted the importance of a combine use of TerraSAR-X data and object-oriented classification approaches as a useful source of information and technique for LULC analysis in the African Sahel drylands

    Noise Filtering Strategies of Adaptive Signaling Networks: The Case of E. Coli Chemotaxis

    Full text link
    Two distinct mechanisms for filtering noise in an input signal are identified in a class of adaptive sensory networks. We find that the high frequency noise is filtered by the output degradation process through time-averaging; while the low frequency noise is damped by adaptation through negative feedback. Both filtering processes themselves introduce intrinsic noises, which are found to be unfiltered and can thus amount to a significant internal noise floor even without signaling. These results are applied to E. coli chemotaxis. We show unambiguously that the molecular mechanism for the Berg-Purcell time-averaging scheme is the dephosphorylation of the response regulator CheY-P, not the receptor adaptation process as previously suggested. The high frequency noise due to the stochastic ligand binding-unbinding events and the random ligand molecule diffusion is averaged by the CheY-P dephosphorylation process to a negligible level in E.coli. We identify a previously unstudied noise source caused by the random motion of the cell in a ligand gradient. We show that this random walk induced signal noise has a divergent low frequency component, which is only rendered finite by the receptor adaptation process. For gradients within the E. coli sensing range, this dominant external noise can be comparable to the significant intrinsic noise in the system. The dependence of the response and its fluctuations on the key time scales of the system are studied systematically. We show that the chemotaxis pathway may have evolved to optimize gradient sensing, strong response, and noise control in different time scalesComment: 15 pages, 4 figure

    Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift

    Get PDF
    Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)DuPont MIT Alliance (Graduate Research Fellowship)National Institutes of Health (U.S.) (Grant EB-001960)National Institutes of Health (U.S.) (Grant EB-002026)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374

    Regulation of signal duration and the statistical dynamics of kinase activation by scaffold proteins

    Get PDF
    Scaffolding proteins that direct the assembly of multiple kinases into a spatially localized signaling complex are often essential for the maintenance of an appropriate biological response. Although scaffolds are widely believed to have dramatic effects on the dynamics of signal propagation, the mechanisms that underlie these consequences are not well understood. Here, Monte Carlo simulations of a model kinase cascade are used to investigate how the temporal characteristics of signaling cascades can be influenced by the presence of scaffold proteins. Specifically, we examine the effects of spatially localizing kinase components on a scaffold on signaling dynamics. The simulations indicate that a major effect that scaffolds exert on the dynamics of cell signaling is to control how the activation of protein kinases is distributed over time. Scaffolds can influence the timing of kinase activation by allowing for kinases to become activated over a broad range of times, thus allowing for signaling at both early and late times. Scaffold concentrations that result in optimal signal amplitude also result in the broadest distributions of times over which kinases are activated. These calculations provide insights into one mechanism that describes how the duration of a signal can potentially be regulated in a scaffold mediated protein kinase cascade. Our results illustrate another complexity in the broad array of control properties that emerge from the physical effects of spatially localizing components of kinase cascades on scaffold proteins.Comment: 12 pages, 6 figure

    Noise Amplification in Human Tumor Suppression following Gamma Irradiation

    Get PDF
    The influence of noise on oscillatory motion is a subject of permanent interest, both for fundamental and practical reasons. Cells respond properly to external stimuli by using noisy systems. We have clarified the effect of intrinsic noise on the dynamics in the human cancer cells following gamma irradiation. It is shown that the large amplification and increasing mutual information with delay are due to coherence resonance. Furthermore, frequency domain analysis is used to study the mechanisms
    corecore